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Abstract

In recent years, Multi Protocol Label Switching (MPLS) has been considered as the preeminent technology to incur Quality of Service
(QoS) for integrated services. However, in wireless networks the remotes mobility endangers resource management procedure and QoS
provisioning. In this paper we propose a new location prediction method based on Evolving Fuzzy Neural Networks (EFuNNs), to man-
age Label Switched Paths (LSPs) in an MPLS domain. The proposed predictor employs geographical characteristics of underlying area
and the movement history of a remote, to produce a set of confidence ratios as the output. That set is considered as a criterion for estab-
lishing and managing LSPs so that QoS preserved. The simulation results have shown superior performance in terms of prediction accu-
racy and utilization improvement for the proposed methods.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Cellular MPLS networks; LSP management; Evolving Fuzzy Neural Networks; Quality of Service; Mobility prediction
1. Introduction

The third generation of mobile systems provides differ-
ent services to end users, extending the scope of second
generation mobile from simple voice telephony to complex
data applications such as voice over IP, web browsing and
file transfer as discussed in [7]. As the result, QoS support
for different traffic requirements will be necessary in next
generation wireless networks. However, nodes mobility
jeopardizes the resource allocation process, and decreases
the quality of service provided to delay sensitive traffic.
Limited bandwidth and mobility of users in wireless net-
works, accentuates that traditional QoS engineering meth-
ods are insufficient.

In the other hand, increasing number of subscribers and
bandwidth demand have pushed the mobile networks to be
designed with smaller area cells to attain higher frequency
0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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reuse. It is widely accepted that as long as the area cell
shrinks, an increment in the number of handovers is
unavoidable [12]. To have smooth and robust handover
procedure, necessary measures such as minimizing errone-
ous handover decisions, protecting connections from dis-
ruption and preserving QoS during handovers should be
considered. In performing such procedures, location predic-

tion plays an essential role in allocating enough resources
before handing over a moving remote.

To incur QoS for different services, MPLS [8] has been
considered as the preeminent technology in recent years.
In the core networks, MPLS is emerging as the technology
of facilitating traffic engineering and internetworking.
Label Switched packet transferring is an extension to
packet forwarding whereby short fixed length labels are
attached to packets at entry nodes. The labels are assigned
according to packets FECs1 which are determined based on
traffic engineering metrics and QoS policies. Packets would
be delivered to their destinations (or mediating nodes)
1 Forwarding Equivalence Classes.
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through LSRs2 that swap labels according to traversing
paths. These paths are established between egress and inte-
rior nodes in MPLS domain according to FEC of traffic
and minimum expenditure. MPLS technology can provide
QoS by employing CR-LDP3 [10] or RSVP-TE4 protocols.
These protocols utilize traffic attributes for setting up and
holding LSPs and providing resources for them. MPLS
can provide both COS5 and virtual path objectives. So, it
has advantages of both IP Diffserv and ATM in providing
QoS for different types of traffic. Owing to MPLS advanta-
ges, there are a lot of efforts to exert it to wireless networks
for QoS improvement.

In this paper, we consider service quality provisioning in
an MPLS cellular network. A method is proposed to main-
tain QoS requirements for offered services by properly
managing handoff procedure. To provide adequate
resources to the service given to a remote, the LSPs are
established and managed based on the predicted next cell
of presence of that remote. The location prediction is done
by a new method based on EFuNNs. Each output of the
predictor indicates the degree of confidence for the corre-
sponding neighboring cell, showing that how likely the
remote may move to that cell.

In the next section of this paper, we will review related
works on location prediction, handoff management and
MPLS and its employment in wireless cellular networks
for QoS implementation. In Section 3 EFuNNs is
explained. The proposed location predictor is presented
in Section 4. In Section 5, our proposed method for QoS-
based resource management in an MPLS domain using
location prediction is described. Simulation results and dis-
cussions are presented in Section 6, and finally, the paper is
concluded in Section 7.

2. Related works

This paper contributes in three issues: location predic-
tion, handoff management and cellular MPLS. In this sec-
tion, we review some related works on each of these areas.

2.1. Location prediction methods

Predicting the next cell of presence may be employed in
various cellular network procedures such as resource man-
agement, admission control [16,39] and handoff procedure.
Location prediction methods may perform some of the fol-
lowing techniques as mentioned in [38]:

– Predicting next cell of presence for a remote,
– Predicting time of presence in a cell for a remote,
– Historical-based prediction,
– Topography-aware prediction,
2 Label Switched Routers.
3 ConstRaint-based Label Distribution Protocol.
4 ReSerVation Protocol & Traffic Engineering.
5 Class Of Service.
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– Per-user prediction,
– Per-cell prediction.

In [13], authors have proposed a simple prediction
scheme using pattern matching. The predictor stores the
historical movement pattern of each user in a database
and compares the recent states with previous tracks to pre-
dict future movement. Authors in [14] use a statistical
method to predict the number of channels needed in each
cell to be reserved for mobile nodes in neighboring cells.
This predictor uses speed, direction and node arrival
elapsed time as parameters. To improve call connectivity,
authors of [17] have proposed the concept of shadow cluster.
A shadow cluster defines the area of influence of a mobile
node and indicates a set of BS6s to which the MN would
likely be connected in future. Each BS in the shadow cluster
anticipates the MN arrivals and reserve resources for them.

Two neural network-based predictors have proposed in
[11,12]. Both of these predictors are per user. In [11],
authors have employed a feed-forward 3-layer neural net-
work. Inputs to this predictor are a set of BSs taken from
the movement history of MN. The outputs are 8 possible
directions and the distance (number of hops) of the future
movement. The simulations has showed 93% average accu-
racy for uniform movement, 40–70% average accuracy for
regular movement and 2–30% average accuracy for ran-
dom movement patterns. In [12], feedback neural network
structures (Joredan-, Elman- and Hierarchical Elman-Net-
works) are used for the same purpose as [11].

As the mentioned predictors are per-user and movement-
dependent, their operation is broadly based on movement
patterns and movement history of mobile nodes. Although
noticing to the topography of underlying area, such as a
high-way in a cell, may facilitate the next presence cell pre-
diction, these methods do not benefit from topography.

Authors of [18] have proposed a neural network-based
topography aware predictor for handoff management. This
predictor combines the mobile nodes movement history,
current state and topography of the cells as inputs. To take
the properties of underlying area into account, RSSIs7 of
surrounding BSs is measured by MNs as movement his-
tory. To utilize the movement history for prediction, this
model employs a predictor per each BS. This predictor is
a feed-forward 3-layer neural network which anticipates
the next RSSIs for a remote. Simulations by authors have
shown that the proposed method is more accurate in pre-
dicting mobility patterns when topographical features have
impact on users’ movements.
2.2. Handoff management methods

Handoff management methods may be classified accord-
ing to the metrics used to decide about the necessity of
6 Base Station.
7 Received Signal Strength Indicators.
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handover. These metrics include signal strength [18,21], dis-
tance [22] and bit error rate [23]. Due to the fuzzy nature of
parameters such as distance or RSS, the handoff planning
is a complex procedure. There are several algorithms that
employ advanced techniques such as Neural Networks
[15,24–28], fuzzy logic [24–27] and pattern recognition
algorithms [29–31].

Authors of [32] have proposed a fuzzy inference system
for handoff decision. The input metrics of this system are
RSS8 from the current and candidate neighboring access
points, ratio of used capacity to the total capacity of those
access points and relative direction and speed of MNs. The
outputs of this system (which are numbers between 1 and
9) are the membership value of a mobile node for currently
serving and candidate access points. The MN does not
handover if its membership value for its current access
point is above a predetermined threshold. When handoff
is necessary, the access point with better membership hys-
teresis value than the current access point will be selected.
The results of simulations have been shown on VCL9-based
tactical communication systems.

In [19], a fuzzy technique has been represented for
microcellular handoff. In this method, RSSI and distance
have been selected as metrics for planning. The output of
this algorithm is called hand-over factor (HO-Factor). A
value of HO-Factor close to 1.0 is interpreted as strong case
of handoff and a value close to 0.0 is the opposite. When
the HO-Factor value for current BS exceeds the value for
another target BS (neighboring BS), the handover is
necessary.

Authors of [41] have proposed an adaptive fuzzy logic-
based algorithm that can adapt itself with the dynamic con-
ditions of hybrid networks.10 It uses the mobile terminal
speed estimation and the traffic volume in wireless LAN
as additional input parameters.

In [42], a fuzzy logic-based scheme has been presented
for selection of the best base station at the time of handoff.
This scheme considers three criteria, namely, received
power level, user population and utilized bandwidth of
each base station.

The approach proposed in [43] is based on Fuzzy Logic
to evaluate the average and variation in signal strength
received by a mobile station. To lessen the handoff latency,
the mobile station performs an active scan process only
once to obtain the complete handoff parameters.

A serious issue in handoff planning is frequent unneces-
sary handovers. For example an RSS-based algorithm may
encounter a problem which is called ‘‘ping-pong’’ effect.
This problem occurs when the remote locates around the
mid-point between two access points so that the received
signal strength oscillates and the remote may be handed
over several times. To remedy this problem, in [33] a
threshold is introduced to avoid the MN from handover
8 Received Signal Strength.
9 Virtual Cell Layout.

10 Internetworking between wireless LANs and mobile networks.
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until the RSS from the currently serving BS degrades below
predetermined threshold. Another technique is to intro-
duce a hysteresis to the RSS-based algorithm [33].
Although both of the above methods reduce the ping pong
effect, but introduce delay to handoff procedure and are not
able to respond fast enough in microcellular environments
[32]. Such a problem indicates that the handover algorithm
requires making crisp decision in a region of uncertainty
with metrics that are fuzzy in nature as implied in [40].

2.3. MPLS in cellular networks

In many existing models for MPLS employment in wire-
less networks, Mobile Nodes need not to know any about
MPLS technology. MPLS domain starts from Base Sta-
tions or interconnecting Routers. In fact, base stations or
routers are responsible for connecting wireless domain to
MPLS domain [6]. In [4] a wireless network architecture
which is based on MPLS has been proposed. In this archi-
tecture, MPLS domain does not include base stations, so
the LER11s are the routers which are connected to base sta-
tions (MLSN12s).

In mobile internet connectivity, MIP13 has been chosen
as the core of mobility management mechanism for recent
cellular networks. However, basic MIP inherits its bases
from IP, so is incapable of providing QoS. The interest in
MPLS, as an underlying forwarding scheme for MIP, is
justified by its capability to accommodate scale and QoS
guarantees [35]. In [2,3], authors have proposed a method
which is based on integration of MPLS and MIP.

2.4. Handoff management in cellular MPLS

In previous research, generally, handoff management is
performed by MPLS nodes (LSRs) in backbone. In [1]
two methods for handoff management have been proposed
in which there are special LSPs from the nearest router to
the base station, for every connection between an MN14

and its destination. In the first method which is named
‘‘Dynamic Rerouting’’, during handover, the new BS
detects the nearest LSR in the previous LSP (between the
previous BS and destination) and establishes a new LSP
between itself and that LSR. Actually a new LSP is pro-
vided to transfer data from MN to its destination, consid-
ering Make-Before-Break policy. This scenario is shown in
Fig. 1 where LSR2 is the nearest common LSR.

In the second method called ‘‘pre-established paths’’, a
set of pre-established LSPs is used. There is a pre-estab-
lished LSP from each BS to the destination node of a con-
nection. While an MN is moving from a cell to another,
packets sent from this remote traverse through a new
LSP in the corresponding cell. The communicating node
11 Label Edge Router.
12 Mobile Label Switched Node.
13 Mobile IP.
14 Mobile Node.

ia, QoS provisioning by EFuNNs-based handoff planning in cel-
.001



CN

BS1

BS2

MPLS Core 

E-LSP

L-LSP

Fig. 3. QoS support in WMPLS networks.

BS1 BS2 BS3

CN

LSR1

LSR2

LSN2

Backbone

LSN1

LSN3

Fig. 1. Dynamic rerouting process.

4 B.S. Ghahfarokhi, N. Movahhedinia / Computer Communications xxx (2007) xxx–xxx

ARTICLE IN PRESS
recognizes the handover from LSP change, and uses the
new LSP for sending packets to that remote.

An important problem in handoff management is han-
dling handoff in a diversity area. In a diversity area a
remote can receive and transmit packets from and to two
or more base stations. MPLS has the inherent capability
to support multiple parallel LSP tunnels between multiple
nodes and merge these LSPs using Label Merging capabil-
ity. As considered in Fig. 2, in ‘‘Dynamic Rerouting’’ sce-
nario, when the mobile is transmitting packets to two or
more base stations, these base stations forward the packets
with different labels to the same LSN (the nearest LSR to
the new BS in old LSP) [1]. In this LSN labels will be
merged and packets will be forwarded with the same label.

2.5. QoS support in wireless MPLS

There are two approaches to provide QoS in an MPLS-
based wireless network [5]. The first one is to use a single
LSP to connect each BS to backbone. So, multiple classes
of traffic from a base station will be carried within one
LSP which is named ‘‘E-LSP’’. QoS differentiation, in this
method, is provided by packet marking and per-hop-
behavior using COS field of headers.

The second way is to use multiple LSPs named ‘‘L-LSP’’
to connect each BS to the backbone. Each LSP carries one
class of traffic. These approaches are shown in Fig. 3.
CN
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LSNLabel Merge Point 

Fig. 2. Handling handoff in the diversity areas.
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Another proposed way for QoS support in MPLS archi-
tecture is using CR-LSP.15 CR-LDP16 defines two proper-
ties for each CR-LSP called setup priority and hold priority.
CR-LDP reserves resources for each LSP according to its
QoS requirements and establishes a new LSP if there is
enough resources for it or there is a previously established
LSP with smaller hold priority than setup priority of emerg-
ing LSP.

Our proposed location predictor is based on EFuNN.
This network will be discussed in the next section.
3. Evolving Fuzzy Neural Network

EFuNN is based on ECOS17 framework for building
online, adaptive intelligent systems that have both their
structure and functionality evolving in time. The model is
called evolving because of the nature of the structural
growth and structural adaptation of the whole evolving
connectionist system which it is a part of that. EFuNN sug-
gests a neuro-fuzzy systemic approach that employs grow-
ing supervised/unsupervised, knowledge-based learning
methods [34]. While new connections and new neurons
are created during the operation of the system, EFuNNs
can accommodate new input data, including new features
and new classes through local elements tuning. These char-
acteristics are useful in cases where the number of features
or classes is not determined. The reports in [36] exhibit that
the EFuNN model not only gives the analogous perfor-
mance compared to other complex neuro-fuzzy systems,
but also provides the feature of the expeditious one pass
parameter training which makes it highly suitable for the
low power requirement. Authors of [44] have used
EFuNNs for zone radius estimation which is used for zone
routing protocol in Bluetooth networks.

The EFuNN employs a feed forward neural network to
process fuzzified data and defuzzifies the fuzzy data as the
output. Generally, an EFuNN includes five processing
stages, which are network initiation, inputs feed forward,
parameters tuning, node aggregation and pruning, and rule
extraction, respectively. The fuzzy input layer carries out
fuzzy quantization of the inputs. The rule layer contains
rule nodes that can evolve through learning. As shown in
Fig. 4, after each input vector is fed into the EFuNN, the
network updates its parameters, evolves connections,
aggregates and prunes nodes based on the output error
15 ConstRaint-based LSPs.
16 ConstRaint-based Label Distribution Protocol.
17 Evolving Connectionist Systems.
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during the last epoch if necessary. Then the EFuNN prop-
agates the signals forward, and computes the output error
again. Then the defuzzification for the fuzzy output layer
gets done in the output layer [34].

3.1. Network initiation

At the network initialization phase, the connection
weight matrixes W1 and W2 (as shown in Fig. 4) are set
to some predefined values based on the past experience of
the network. W1 and W2 represent the coordinates of the
sphere center in the fuzzy input space and in the fuzzy out-
put space respectively. The membership functions, the
number of the rule nodes and the connection patterns of
W1 and W2 are decided based on specifications of the
problem.

3.2. Input feed-forward layer

When a new sample is fed as input, first it is fuzzified at
the fuzzy input layer, then the Fuzzy Distance (FD)
between the output of the fuzzy input layer and the connec-
tion weights W1 are calculated to determine if the input
falls into the receptive distance of some specific rule node.
The fuzzy distance between the two fuzzy membership vec-
tors of input Xf and the connection weights of the jth rule
node, W1,j is defined as follows:

FDðX f ;W 1;jÞ ¼
kX f � W 1;jk
kX f þ W 1;jk

; j ¼ 1; 2; . . . ; N ð1Þ

where N is the number of rule nodes, W1,j is the jth column
vector of matrix W1, iXf �W1,ji denotes the sum of all the
absolute values of the vector obtained by subtraction of
vectors Xf and W1,j. Likewise, iXf + W1,ji is the one ob-
tained by summation of vectors Xf and W1,j.

We then select the rule node with the highest activation
which is the lowest FD value. The activation set for the rule
layer is defined as matrix A1 with the row vectors given by:

A1;j ¼ 1� FDðX f ;W 1;jÞ ð2Þ
Please cite this article in press as: B.S. Ghahfarokhi, N. Movahhedin
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If the activation of the selected rule node is smaller than a
predetermined sensitivity threshold, a new rule node is cre-
ated and the new connection weights are established for the
new fuzzy input and fuzzy output pair Xf and Yf. So, the
new network has two new weight vectors W1,(N + 1) and
W2,(N + 1) where

W 1;ðN þ 1Þ ¼X f

W 2;ðN þ 1Þ ¼Y f ð3Þ

On the other hand, when the activation of the selected rule
node is larger than the sensitivity threshold, it will be
passed forward to the next layer to compute the output
of Fuzzy Output Layer A2 as follows:

A2 ¼ satlinðW 2 � A1Þ ð4Þ
where W2 = [W2,1 W2,2 . . .W2,N] and satlin(.) represents the
saturating linear transfer function. Similarly, a new rule
node will be created if the following fuzzy output error is
larger than a predefined threshold value,

FEout ¼ kA2 � Y fk ð5Þ

At last, crisp output value Yc can be derived by Eq. (6):

Y c ¼ W 3 � A2 ð6Þ
where W3 denotes the connection weight matrix between
the fuzzy output layer and the output layer.

3.3. Parameter tuning

The training process of the network includes the updates
of the connection weights W1 and W2, the learning rate and
the sensitivity thresholds for each rule node. W1 is adjusted
using unsupervised learning based on the similarity
between the fuzzy input vector Xf and the stored proto-
types W1,j for the jth rule node as follows:

W 1;jðtþ 1Þ ¼ W 1;jðtÞ þ gjðW 1;jðtÞ � X f Þ ð7Þ
and W2 is updated according to the Widrow–Hoff least
mean square (LMS) algorithm [37] that minimizes the fuz-
zy output error,

W 2;jðtþ 1Þ ¼ W 2;jðtÞ þ gjðA2 � Y f Þ:A1;j ð8Þ

In both equations, gj stands for the learning rate of the jth
rule node. Note that gj can be expressed as gj = 1/ACCj,
where ACCj is the accumulated number of accommodated
examples for the jth rule node.

The sensitivity threshold for the rule node, which has
been referred in Eqs. (5), (6) or (7), is given by

Sjðtþ 1Þ ¼ SjðtÞ þ FDðW 1;jðtþ 1Þ;W 1;jðtÞÞ ð9Þ
3.4. Rule node aggregation

After certain number of training samples has been pre-
sented, some neurons and connections may be pruned or
aggregated. If the fuzzy distance as given in Eq. (1) for
every two out of K nodes is less than a predefined threshold
for both connections W1 and W2, the K nodes can be aggre-
ia, QoS provisioning by EFuNNs-based handoff planning in cel-
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Fig. 5. The fuzzy rule extracted from EFuNN network.
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gated into one single rule node with the following connec-
tion weights and sensitivity threshold:

W r;agg ¼
PK

i¼1W r;i

K
; r ¼ 1; 2 ð10Þ

Sagg ¼ 1�Max
i21::K
ðFDðW 1;agg;W 1;iÞÞ

where W1,agg, W2,agg and Sagg represent the connections
and sensitivity threshold for the aggregated node,
respectively.

3.5. Rule extraction and insertion

Every rule node in the network can generate a fuzzy rule
from W1 and W2 connections. We assume that there exists
a fuzzy rule in the network as in Fig. 5.

In Fig. 5 the number after each fuzzy label represents the
degree to which the centers of the input and the output
hyper-sphere belong to the respective membership func-
tion. The degrees associated with the premise and the con-
sequent parts of the rule are the connection weights of W1

and W2, respectively.
For manual insertion of new fuzzy rules, a new rule

node, ri, will be inserted in the rule layer such that the con-
nection weights W1(rj) and W2(rj) of the rule node represent
this rule. It means that only for corresponding linguistic
terms in rule, values of W1(rj) and W2(rj) are one and for
others are zero.

4. Proposed predictor

In this section, we propose an EFuNN-based predictor
which considers uncertainty characteristics of handover
process. The proposed model is a motion predictor with
the following characteristics:

– It considers the topographical characteristics of underly-
ing area, in addition to motion history of users.

– There is a predictor per each cell which predicts the next
cell of presence for all of the remotes in that area cell.

– The proposed predictor is velocity adaptive.

The predictor is illustrated in Fig. 6. The inputs to this
predictor are ASSI18 of currently serving BS and neighbor-
ing BSs, AV19 and AD20 of an MN. The outputs are the
predicted RSSIs of that MN, velocity and direction which
may be used in handoff decision.

To collect the training data set, each BS uses the move-
ment history of alive MNs in its area cell. Each movement
history element includes a set of RSSs from the neighbor-
ing BSs, current velocity (V) and direction (D) of that
MN. An example of a training data set is in the form of
below:
18 Averaged Signal Strength Indication.
19 Average Velocity.
20 Average Direction.
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patt ¼ hhSN ; SN�1; . . . ; S2; S1i; hS0ii ð11Þ

where Si is the motion history in ith previous time step and
S0 is the current motion status which is recorded by MN.
The first part of patt vector will be used as the input com-
ponent and the second part, ÆS0æ is the corresponding tar-
get output. Si is a vector of the following form:

Si ¼ hRSSðBScurðiÞÞ;RSSðBS1ðiÞÞ; . . . ;RSSðBSMðiÞÞ;Di; V ii
ð12Þ

where M is the number of neighboring cells. The received
signal strength and the velocity (V) values are normalized
to lie in the range of [0, 1] and direction (D) is a value with-
in [0, 360] interval. The RSS(BSJ(i)) value in Si is the re-
ceived signal strength value from Jth Base Station where
BSs are numbered in a clockwise direction around the cur-
rent cell in ith history element.

The training patterns are preprocessed by an adaptive
weighted averaging operation with variable weight, c and
constant window length (N) using the following formula:

Sinput ¼
XN

i¼1

ci�1Si; c 2 ð0; 1� ð13Þ

The parameter c is the forgetting factor which diminishes
the effect of long term history. The variable weight is up-
dated based on the previously predicted MN velocity as
shown in Fig. 5. For higher velocities, the long history is
less correlated with the current status. As such, the value
of c should be smaller to diminish the effect of long history
Fig. 6. Proposed mobility predictor.
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further. Regarding that, c can be taken proportional to
1 � Vp where Vp is the predicted velocity. The Sinput vector
which is the input vector to EFuNN-based predictor can be
interpreted as below:

Sinput ¼ hASSIðBScurÞ;ASSIðBS1Þ; . . . ;ASSIðBSMÞ;AV;ADi
ð14Þ

where each parameter is the averaged value of the corre-
sponding parameters in the history vectors (Si).

The training samples which are applied to EFuNN dur-
ing training phase are in the form of ÆSinput, S0æ pairs of
vectors.

The membership functions of fuzzy variables, ASSI,
AV, PV and RSSI, are shown in Fig. 7.

The membership functions of averaged direction (AD)
and predicted direction (PD) are represented in Fig. 8.

The predicted values of RSSI and direction PD can be
used for handover decision using the adaptive fuzzy handoff

algorithm with direction biasing which has been proposed in
[24]. Also, as the other purpose of this paper, the RSSI part
of the output is used in two different proposed policies for
LSP management. These policies will be discussed in the
next section separately. In the first policy, we select the
maximum output as the most probable next cell of presence.
In the second policy, outputs will be compared with a
threshold T to find a set of neighboring cells which are cho-
sen as the most probable cells of presence with confidence
degrees equal to the respective output values.
5. LSP management using predicted RSSIs

This research is continued by proposing and comparing
two policies for LSP management in MPLS domain using
location prediction results. We assume that MPLS domain
begins in base stations. Therefore, BSs operate as LERs
that label packets of subordinate MNs based on their des-
tinations. In the first policy, a temporary LSP will be estab-
lished in the most probable next cell of presence for each
existing LSP. In the second policy, a set of temporary LSPs
will be established in the set of most probable cells of pres-

ence for each existing LSP. These LSPs are CR-LSP21s [10],
21 ConstRaint-based LSP.
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which are utilized for QoS provisioning. These two policies
are explained in the following subsections in more detail.
5.1. Pre-established temporary LSPs

As mentioned earlier, the first policy considers simple
LSPs in the most probable next cell of presence. Hence,
the process of LSP establishment and management is pre-
sumed in three situations as follows:

(a) When the handover occurs and the MN moves to a

new cell. If there are no pre-established temporary LSPs
for its traffic, these LSPs will be established between BS
and destinations for existing FECs, using LDP protocol
[9]. Then, the pre-established or currently established LSP
will be used by BS to deliver the traffic of that MN.

(b) At every time step. Each BS predicts next location of
its MNs and informs neighboring BSs to establish new tem-
porary LSPs before MNs handover. Moreover, if previous
prediction for each MN is different from current predic-
tion, preceding temporary LSPs for that MN should be
omitted after a predetermined number of time steps.

(c) When an MN is leaving a cell. Current BS keeps
respective LSPs for that MN until it leaves the diversity
area. So, that MN can transfer its traffic using both LSPs.
5.2. Pre-established temporary CR-LSPs

In the second policy, CR-LSPs are used as temporary
pre-established paths. The outputs of proposed predictor
which are confidence degrees are employed for setup and

hold priorities. These priorities are defined between 1 and
7 in each CR-LDP and the highest priority holder is used
for permanent LSPs for each FEC. A hold and setup prior-

ity between 1 and 6 is assigned to each temporary CR-LSP
according to its confidence degree. The process of LSP
establishment and management is further described in three
situations as below:

(a) When the handover occurs and the MN moves to a

new cell. If there are no pre-established temporary CR-
LSPs for its traffic, these LSPs will be established with max-
imum hold and setup priority, 7. On the other hand, if
there are previously established CR-LSPs, their hold prior-
ia, QoS provisioning by EFuNNs-based handoff planning in cel-
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Fig. 11. Utilization for the classic handover method.
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ities will be modified to 7. Then the BS uses these CR-LSPs
for that MN.

(b) At every time step. Each BS predicts next locations
of its MNs and obtains the confidence degrees for each
neighboring cell. Then, the BS chooses a set of next cells
of presence for each MN if their confidence degrees are lar-
ger than a preset threshold T. Afterwards, BS informs cho-
sen neighboring BSs about establishment of the new
temporary CR-LSPs with setup and hold priorities accord-
ing to respective confidence degrees (according to heir order
in the above set). Those BSs must establish new CR-LSPs
for each MN using CR-LDP before handover. Moreover,
if previous prediction for each MN is different from current
prediction, precedent temporary CR-LSPs for that MN
should be omitted or their hold priorities should be
modified.

(c) When an MN is leaving a cell. Those CR-LSPs in
neighboring cells which are not necessary will be removed.
Moreover, currently used CR-LSPs for this MN will
remain until MN leaves the diversity area.

In the next section, the simulation results for proposed
predictor and handoff management in a wireless MPLS
domain are presented.

6. Simulations results

The simulations are performed in two phases. First, the
accuracy of proposed predictor is evaluated and then, the
performance of proposed LSP management method is
examined.

Simulation environment has been implemented in NS
[20], and includes of 25 circular cells and one highway.
A population of 20 MNs is considered where half of
MNs have random mobility model while others move
with different speeds in highways. The value of N and
the initial value of c are chosen to be 10 and 0.9, respec-
tively. The time step has been considered to be 0.5 s, sim-
ilar to [44] (as the measurement sampling period is 0.5 s
in GSM [24]). We have used the propagation model
which has been proposed in [45] to compute the RSS val-
ues from the distances. Although the value of velocity is
determined by NS, authors of [44] have proposed several
methods to estimate the velocity. After online training of
EFuNN-based predictor using our proposed method, the
prediction error for random and regular movement pat-
terns have been computed and illustrated in Figs. 9
and 10.

In the second phase of simulation, we consider data
delivery criterion in a packet-based network to investigate
the performance of the proposed method for LSP manage-
ment. We assume that 1 Mbps links connect each BS to
backbone, and there are four MNs which have four estab-
lished connections with four corresponding nodes (CN1,
CN2, CN3 and CN4) in backbone. Each MN transmits
1 Mbps of CBR traffic over its connection. The data deliv-
ery ratio is observed using four loss monitors in the corre-
sponding nodes (CNs). The normalized value of delivered
Please cite this article in press as: B.S. Ghahfarokhi, N. Movahhedin
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data in corresponding nodes is evaluated for three different
handoff management methods. The first method is a basic
scheme without prediction. The other two methods are
the proposed policies for LSP management using predictor.
The simulation results are shown in Figs. 11–13 for 3600
time steps using the same traffic pattern for those three
methods.
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The results of simulations show that in the tradi-
tional handoff management method, there are quality
degradations during handoffs. Furthermore, the band-
width from a BS to the corresponding node is shared
between a numbers of traffic flows in the current cell.
For our first proposed method, the process of handoff
is faster. Thus, the traffic degradation during handover
interval is lower, although there is shared links between
different MNs.

Since the bandwidth is reserved for each traffic flow in
the second proposed method, the traffic degradation is
minimized for admitted flows and providing quality of ser-
vice for CBR traffic is more convenient. As the BS-to-core
links are band-limited, the utilization decrease occurs dur-
ing some short time intervals due to incorrect prediction
and late LSP establishments in a number of traversed cells.
This reduction is near 100% because of bandwidth reserva-
tion for other previously established LSPs.

To compare the average utilization for the three dis-
cussed methods, the utilization is moving averaged over a
500 steps averaging window. The results are shown in
Fig. 14. This figure illustrates that the CR-LSP presents
better performance, in terms of delivered data, over the
two other methods.
0
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Without Predictor 
Using pre-established LSP 
Using pre-established CR-LSP 
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Fig. 14. Averaged utilization for the three methods.
7. Conclusions

In this paper we considered QoS provisioning in MPLS
wireless networks by means of mobility prediction. To offer
adequate resources for a flow before handoff, we proposed
two methods for LSP management based on location pre-
diction. A new mobility predictor using evolving fuzzy neu-
ral networks is proposed. The predictor provides enough
accuracy to reduce the number of unnecessary handovers.
Furthermore, two methods for LSP management by the
proposed predictor are proposed. Using prediction results
in resource management reduces the ping-pong effect
because of existing pre-established LSPs. Moreover, using
CR-LSPs to pre-reservation of resources for different traf-
fics has significant effects on data delivery. Simulations
results show that pre-established CR-LSPs based on the
proposed method presents superior performance in terms
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Fig. 12. Utilization for the pre-established LSPs method.
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of utilization and data delivery. The VBR traffic and inves-
tigating the effects of proposed schemes on its quality of
service will be considered in the future research.
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